
NAO robot simulation for service robotics purposes
Stefano Michieletto

Email: michieletto@dei.unipd.it

Davide Zanin
Intelligent Autonomous Systems Lab (IAS-Lab)
Department of Information Engineering (DEI)

University of Padova
Email: zanindav@dei.unipd.it

Emanuele Menegatti

Email:emg@dei.unipd.it

Abstract—Humanoids playing soccer are required to solve a
great variety of tasks: from perception to body motion, from
decision making to team coordination. On the other hand, results
from this community are sometimes underestimated or unex-
ploited because of the dedicated software developed. In particular
simulators are often designed for a specific robotics platform or
in some other cases the integration with existing software and
frameworks is hard to implement and time consuming.

In this paper we introduce a novel virtual model to simulate
the humanoid robot Aldebaran NAO. The URDF (Unified Robot
Description Format) standard has been followed in order to
maintain the model as general purpose as possible. Related
plug-ins to make it works in Gazebo and V-REP simulation
environments were also developed in order to test the model
under ROS (Robot Operating System), a very common robotics
framework.

I. INTRODUCTION

The importance of simulation environments is increasing
in both technical and research areas. Simulating mobile robot
platforms provides several advantages compared to the real
world: no limitations in the number of robots due to lack
of money, no sensors or actuators inaccuracies, flexibility in
the environment complexity, and debugging capabilities. These
features are even more important working with humanoids.
Moving around with humanoid robots means take into account
of at least 10 DoF, maintaining meantime the robot stability.
Falls might become unavoidable and a real scenario probably
involve damages to robots or sensors.

One of the most diffuse humanoids is Aldebaran NAO. A
lot of research laboratories bought one of them and it is the
Standard Platform at Robot Soccer World Cup (RoboCup).
Due its use in RoboCup, in the last decade a large amount of
humanoid soccer simulators has been developed using NAO
as test platform. Nevertheless, only a small part of the tested
algorithms are actually available in the robotics field. The
most of these algorithms come from projects based on popular
frameworks o middleware[5], where other communities than
soccer roboticists are interested in.

The same is for the simulators themselves: they are mainly
focused on soccer competitions, only few specific platforms
are available and no attention is paid on common situations in
manifacturing or home environments. Thus, it is very difficult
to reuse in a different environment the features introduced,
even if they are well implemented. And the viceversa is
also true: innovation in service or industrial robotics takes

long to be integrated in soccer simulators, with a consequent
technological delay. Several attempts have been done to close
the gap. In [7] Kalyanakrishnan and Stone proposed simulators
such as Microsoft Robotics Studio [6] and Cyberbotics We-
bots [10] to provide to RoboCup teams useful tools for better
programming their robots. A comparison with 3 RoboCup
platforms is exposed starting from the experiences author’s
team made in the competitions. They put attention on physics
engines testing skills such as walk, kick, turn, and get up.
Data from all simulators are applied to the physical robot and
no one work consistently, however they are able to improve
their performances merging information from the different
simulations. In [15] authors tested a 3D RoboCup simulator
(SimSpark [11]) and a novel robotics simulator developed
by their Faculty (SimTwo [12]). The comparison approach
was based on a benchmark composed of two different motors
movements, the most significantly one is walking. A similar
approach was used in [9] and [4] comparing the distance
walked by a real robot and the one simulated in USARSim [2]
and Microsoft Robotics Studio [6]. An additional test was
performed increasing the number of robots in the scene and
counting the frame per seconds (FPS) generated by each
simulator.

In our work, we have followed this trend moving the line
even more closer to home robotics simulators. Our aim is to
let soccer roboticists simulate their algorithms using a very
common framework in service robotics community, in order
to take advantage of the good practices and help to solve open
problems. We created a novel virtual model of Alberan NAO
suitable for different Open Source 3D simulators. In particular,
we tested it in Gazebo [8] and V-REP [3]. As highlighted in
[17] one of most popular and well performing simulators is
Gazebo, while V-REP is an emerging platform which became
Open Source at the beginning of 2013. Two different tests
are planned to verify the robot model is near to real one. The
former test involved straight walk, the latter is focused on turn
around.

The remainder of the paper is organized as follows: in
Section II an overview and a comparison of the two simulators
chosen to try the model are presented. The NAO characteristics
and a detailed description of our virtual model are given in
Section III. The architectures used, the tests performed and
results collected are described in Section IV. Conclusions and
future works are contained in Section V.



II. SIMULATION ENVIRONMENTS

A. Gazebo

Gazebo [8] is an Open Source 3D simulator which is
capable of simulating a wide population of robots, sensors
and objects. The project started in 2002 at the University
of Southern California. It was designed to help researchers
working on robotic vehicles in outdoor environments, but it
manages also indoor situations. Gazebo has historically been
used as a research and development tool to rapid prototyping,
locomotion, robot competition, person simulation, and regres-
sion testing. It nominally provides multiple physics engines
including ODE [19] and Bullet [18] (not completely supported
also in the last software release) and general parameters such
as accuracy and performance are exposed to better suite to user
needs. Gazebo relies on OGRE [20] to render 3D graphics and
improve realism generating correct lighting and shadows using
state of the art GPU shaders.

Several objects can be loaded ranging from simple shapes
like cubes or spheres to complex models like buildings or
animals. Each object has his own attributes: mass, velocity,
friction and several other properties to push physic and aspect
as realistic as possible. Many robot models are provided in
a community-supported database, and everyone can create his
own model defining a physical entity with dynamic, kinematic,
and visual properties. Gazebo can also generate information
from different kind of sensors: laser range finder, 2D and
RGB-D cameras, contact sensors, inertial measurement units
(IMUs) and radio-frequency identifications (RFIDs). The use
of sensors is very important: in this way robots can to act in
different ways depending on data read in the simulated world.
Custom plug-ins can be developed to make the robot model
interact with the world. Plug-ins provide direct control over
all robot aspects and manage data collected by sensors.

Many simulation parameters can be directly controlled also
by a QT-based graphical interface. Gazebo is compatible with
several Linux distributions and a native interface to ROS [13]
and Player [14] is provided in order to integrate different kind
of robots. In this way, it is not necessary to use the API
to develop a specific interface for each robot or sensor, but
any device working with ROS or Player can be simulated.
The supported programming language are C, C++, Java and
Python.

B. V-REP

The 3D robot simulator V-REP [3] has been developed to
perform simulation of factory automation systems. V-REP is
available in 4 licenses: Player (free), Pro Edu (free for educa-
tional), Pro Eval (not for commercial use) and Pro (commercial
use) and it is Open Source for not commercial use. The first
public release was in March 2010, in August 2012 started
the ROS integration and at the beginning of 2013 it became
Open Source. V-REP offers fast prototyping and verification,
fast algorithm development, robotics related education, remote
monitoring, hardware control, safety monitoring, and product
presentation. V-REP can rather be seen as a hybrid simulator

that combines kinematics and dynamics in order to obtain the
best performance for various simulation scenarios. It is based
on two physics engine: Bullet [18] and ODE [19] (the same
as Gazebo) and user is free to switch from one to the other at
any time.

The integrated development environment is based on a
distributed control architecture: each object/model can be in-
dividually controlled via an embedded script, a plugin, a ROS
node, a remote API client, or a custom solution. Controllers
can be written in C/C++, Python, Java, Lua, Matlab or Urbi.

V-REP is compatible with Windows, Linux and Mac OS
X. Documentation is very good and cover all aspect of the
simulator. A lot of tutorials and examples allow users to learn
quickly how use it.

C. Comparison

In Table I, a selection of simulators parameters are summa-
rized. The following features are compared:

1) Available licenses(License);
2) Operating system (OS); it describes which OS is sup-

ported by the robotic software.
3) Simulator type; it describes if the robotic software

provides either a 2-D or 3-D simulation environment.
4) Programming language; it describes the language sup-

ported by the robotic software.
5) Year of origin; it specifics the year of commencement

of the simulator;
6) Collision Detection;
7) Sensors; it describes the supported sensors. Only the

most requested sensors are reported in the table due to
space limitations.

8) Graphical User Interface; it describes if it is possible
to modify objects and the environment during run-time
and/or program functions in an development environ-
ment. The graphical user interface does not include
windows that open to display the simulation.

9) Portability; “Yes” means that the code written for a
simulation is portable to a real robotic platform.

10) Scalability “High” means that the simulator does not
require a lot a resource for running complex simulation
and that it can simulate more robot simultaneously,
“Medium” means that the simulator in some case re-
quired a lot resource and “Low” specifics that the
simulator can’t simulate multiple robot at the same time;.

11) Real Time; it specifics the number of allowed operation
during the simulation. “High” means that you can do
a very large number of operation in real time, “Low”
means that only a few operation can do in real time.

12) Interfaces; it describes the facility of integration the
simulator with another system.

13) Documentation level provided with the simulator (Doc-
umentation); it can be “High” or “Low”. “High” means
the documentation only provides descriptions of the
functions in the robotic software libraries; “Low” means
the documentation provides the code for the functions
in the robotic software libraries.



14) Tutorial; it describes if examples and a step-by-step
guide are provided. “Yes” means that a well defined
guide with examples is available; “limited” means a
guide exists, but not enough details and examples are
provided. Finally, “No” means there is not a useful
tutorial and/or examples.

15) Debugging/Logging; describes if the simulator debug-
ging, fault tolerances, play-back, and logging features
are provided by the robotic software.

III. ALDEBARAN NAO

NAO is a humanoid robot produced by Aldebaran Robotics.
With 3000 pieces sold to 550 different universities, NAO is
the most widely used humanoid robot for academic purposes
worldwide.

The robot we used is a H25 v 4.0 version of NAO, it is 58
cm tall with 25 DoF (12 DoFs are embedded in its legs) and
an integrated Intel Atom CPU @ 1.6GHz. It can communicate
with external systems using a Wi-Fi connection. In addition,
the NAO has feedback from of all joints, pressure sensors on
its feet, two gyroscopes, and an accelerometer. NAO came
with a complete software suite to fully program the humanoid
platform, an SDK package makes the developer interact with
the NAOqi application programming interface (API).

A ROS [13] package was also published by Humanoid
Robots Lab at the Albert-Ludwigs-Unversitaet in Freiburg [22]
in order to provide basic functionality to integrate the NAO
humanoid robot into ROS. The ROS integration allows us to
move simulated robots in the same way we control the real
one.

A. Robot model and plugins

The Unified Robot Description Format (URDF) has been
used to create an accurate NAO H25 v4.0 model to simulate
the physical robot in Gazebo and V-REP. The URDF is the
ROS standard way to represent a robot model. This format
can be read from the ROS Visualizer (RViz) and any simulator
integrated in ROS should be able to import this kind of models.

We based our work on the documentation1 by Aldebaran
Robotics. The virtual model is not manually composed, but we
auto-generate it starting from some xacro scripts in order to
better structure our model. The xacro language is based on
XML and it allows us to define basic macros to create more
complex URDF models.

Four basic macros has been created to build the complete
model:

• Joint: defines the model joints;
• Link: defines the model links;
• Visual: defines the model visual meshes;
• Collision: defines the model collision meshes.

this division is very important in order to easily update the
model to new robot versions or attach NAO accessories to the
main body.

1NAO documentation http://www.aldebaran-robotics.com/documentation/

All joints are defined using a single macro setting an effort
limit of 100N , a velocity limit of 5rad/s, a damping factor
of 0N ·m·s

rad and a friction factor of 25N ·m.
For each link composing NAO, we defined the inertial

matrices starting from the ones declared from Aldebaran
and referring them to the CoM (Center of Mass) using the
Huygens-Steiner or Parallel axis Theorem. In Equation 1 the
used formula is explained

ΓCoM = ΓNAO+m
{
‖tCoM,NAO‖2 I − tCoM,NAOt

T
CoM,NAO

}
(1)

were:
• ΓCoM is the calculated inertia matrix referred to the

Center of Mass;
• ΓNAO is the original inertia matrix given by Aldebaran

Robotics;
• m is the mass of the considered NAO part;
• tCoM,NAO is relative translation between the Center of

Mass and the original reference system.
An URDF model already exists in the NAO ROS package

from Freiburg University, but inertial matrices are not correctly
defined, no realistic meshes has been provided and the xacro
scripting only take account of visual and structure separation.
The resulting model is very hard to read and modify, con-
sequently we start to building our new model from zero. It
is worth to notice that, with no proper inertial matrices, the
model coming with the actual ROS package is not suitable for
simulation and so no comparison with our model is possible.

Both Gazebo and V-REP are able to import URDF models,
we only have to develop the specific plugin. Model and plugins
will be released as a Open Source software2. In Figure 1 the
physical and the simulated3 robot are shown.

(a) NAO physical robot. (b) NAO URDF model.

Fig. 1. Aldebaran NAO: physical robot (a) and his URDF model (b).

2A link to the model and plugins webpages will be inserted in the final
version of the paper.

3NAO users can download official meshes from the Aldebaran Robotics
site. A script will be available to properly split in parts the provided 3D mesh
file.



TABLE I
SUMMARY OF THE MAIN FEATURES OF GAZEBO AND V-REP SIMULATORS.

Gazebo V-Rep
License Open Source Open Source for not commercial use
OS Linux Linux, Win, MacOSX
Programming Lan-
guage

C++/Python/Java C/C++/Python/Java/Matlab/ Urbi

Year of origin 2002 2010
Collision detec-
tion

Yes Yes

Sensors Laser Range Finders, 2D and RGB-D
Cameras, Contact Sensors, IMU, RFID

Proximity, Vision, Force

GUI Sufficient Good
Portability Yes Yes
Scalability Medium High
Real time Low High
Interfaces ROS (Excellent), Player (Excel-

lent)
ROS (Good)

Documentation Low High
Tutorial Yes High
Debugging/ Logging Yes Yes

IV. A CASE STUDY
In order to evaluate our model characteristics on the selected

simulators, we tested two concrete, challenging robot tasks,
namely walking straight and turning around. The system
developed is able to generate suitable movements based on
standard motion provided by Aldebaran. The same joint move-
ments could be used as input for both real and simulated
robot. Thus, the tasks were also performed using a real NAO
platform in order to better compare the results coming from
the simulators.

A. Test 1: Straight walk

The first test was based on the standard walking straight
command included in Aldebaran NAO Drivers. The robot
walked 3 different distances (0.5, 1, and 3 meters) at 3 different
velocities (40%, 80%, and 100% of the maximum effort given
by NAO motors). Every single trail was repeated 7 times.
The real robot, V-REP simulator with both ODE and Bullet
engines, and Gazebo simulator were tested. The robot were
stopped when the distance theoretically walked reach the goal,
the joint positions feedback coming from robot motors were
considered to better approximate the measure. On the other
hand, the algorithm did not take advantage of any feedback to
refine the movements.

The space walked by simulated and real robots was analyzed
with respect the expected distance in the xy ground plan.
Figure 2 shows the distances measured along the x axis, where
x is the walking direction; while Figure 3 describes y as the
lateral deviation with respect the straight trajectory.

The typical trajectory followed by the robot is a curve
progressively deviating from the straight direction for both
simulation and reality. All the tested modalities are able
to correctly perform the walk with no falls. Analyzing the
collected data, it is easy to see that the real robot exceeded the
goals, while simulators usually underestimated the distance.

Looking at the requested task, ODE engine, in particular
Gazebo, has performed a great work. The distance walked

is about 70-80% of the goal, the deviation is minimal, and
the variability between the attempts and the tested velocities
is low. On the other hand, the performances are quite poor
compared with the real robot trajectory. The difference along
the x axis starts from 20-25% to walk 0.5 m at 40% of the
maximum effort, and reach 35-40% to walk 3.0 m at 80% of
the maximum effort. The gap is even higher along the y axis:
the deviation performed by the real robot is up 2 m, while the
ODE simulations return substantially zero drift.

The results from Bullet engine are deeply different. Along x
axes, the walked distance is 60-65% less then expected at low
velocities, while it consistently grows augmenting the speed.
The lateral deviation follows the same trend, and it is aligned
to the to the real robot drift, at high velocities.

It is also worth to notice that Gazebo presents a great
repeatability, while V-REP shows a great variability with both
ODE and Bullet engines.

Fig. 2. Results of the task straight walk along x direction. This is not the
real distance walked by the robot, but the projection along x.



Fig. 3. Results of the task straight walk along y direction. A positive value
corresponds to a right deviation of the robot, a negative value corresponds to
a left deviation of the robot.

B. Test 2: Turn around

The second test was based on a standard motion imple-
mented in Aldebaran NAO Drivers to let the robot perform
the turning around task. NAO turned of 4 distinct angles
(90◦ and 360◦ counterclockwise, 180◦ and 270◦ clockwise)
at 3 different velocities (again 40%, 80%, and 100% of the
maximum effort given by NAO motors). As before, each trail
were performed 7 times using the four tested modalities: real
robot, V-REP (ODE and Bullet) and Gazebo. Again, the robot
were stopped when the desired turning angle has been reached.
The feedback coming from robot joint positions helped us in
the measure approximation, but the motion did not depend
from this feedback.

The angle turned by simulated and real robots was analyzed
with respect the expected rotation. Figure 4 shows the absolute
value of the robot rotation around itself.

The robot turned with no falls and a minimal deviation from
its theoretical rotation center in all the considered modalities,
so we did not further investigate this parameter. Again, the
real robot usually overcame the goals, while simulators highly
underestimated the desired rotation.

ODE engine has not performed a great work as in the first
task. The angle turned is usually less than 50% with respect to
the goal, on the other hand the variability between the attempts
and the tested velocities is still low for both Gazebo and V-
REP.

The results from Bullet engine are quite similar, the rota-
tion performed is more effective than ODE engine and the
angle is 60-65% less then expected. at low velocities, while
it consistently grows augmenting the speed. The variability
decreases with respect the walking task reaching the ODE
engine accuracy.

Gazebo has maintain the great repeatability showed in the
first task, V-REP has performed better than walking task, but
a certain variability still persists.

Fig. 4. Result of the task turn around. The absolute value of rotation angle
is showed. At 90◦ and 360◦ the robot has turned counterclockwise, while at
180◦ and 270◦ the robot has turned clockwise.

V. CONCLUSION

In this paper a novel virtual model of Aldebaran NAO was
presented. We met the purpose of creating a flexible model
suitable for simulation of the most diffuse humanoid robot
used in scientific research and in soccer competitions.

Our model is able to properly work with different simulators
using exactly the same code developed for the real robot.
We tested it through two popular service robotics simulators,
namely Gazebo and V-REP. The results showed that both
simulators are able to correctly perform a standard walk and
to make the robot turn around itself without falling.

In this first model version all joints and links were correctly
set, but no sensor has been included. As future work we
will integrate different kind of sensors to better simulate real
situations.

REFERENCES

[1] B. Browning, and E. Tryzelaar. Übersim: A multi-robot simulator for
robot soccer. In In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS,
pages 948–949, 2003.

[2] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. Usarsim: a
robot simulator for research and education. In Robotics and Automation,
2007 IEEE International Conference on, pages 1400–1405, April.

[3] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira. Virtual robot experi-
mentation platform v-rep: a versatile 3d robot simulator. In Proceedings
of the Second international conference on Simulation, modeling, and
programming for autonomous robots, SIMPAR’10, pages 51–62, Berlin,
Heidelberg, 2010. Springer-Verlag.

[4] N. Greggio, E. Menegatti, G. Silvestri, and E. Pagello. Simulation of
Small Humanoid Robots for Soccer Domain. Journal of the Franklin
Institute, 346(5):500–519, June 2009.

[5] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz. Anytime
Search-Based Footstep Planning with Suboptimality Bounds. In Pro-
ceedings of the IEEE-RAS International Conference on Humanoid Robots
(HUMANOIDS), Osaka, Japan, November 2012.

[6] J. Jackson. Microsoft robotics studio: A technical introduction. Robotics
Automation Magazine, IEEE, 14(4):82–87, Dec.

[7] S. Kalyanakrishnan, T. Hester, M. Quinlan, Y. Bentor, and P. Stone.
Robocup 2009. chapter Three humanoid soccer platforms: comparison
and synthesis, pages 140–152. Springer-Verlag, Berlin, Heidelberg, 2010.



[8] N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In Intelligent Robots and Systems,
2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Confer-
ence on, volume 3, pages 2149–2154 vol.3, Sept.-2 Oct.

[9] E. Menegatti, G. Silvestri, E. Pagello, N. Greggio, A. Cisternino, F. Maz-
zanti, R. Sorbello, and A. Chella. 3d models of humanoid soccer robot
in usarsim and robotics studio simulators. I. J. Humanoid Robotics,
5(3):523–546, 2008.

[10] O. Michel. Webots: Symbiosis between virtual and real mobile robots.
In J.-C. Heudin, editor, Virtual Worlds, volume 1434 of Lecture Notes in
Computer Science, pages 254–263. Springer Berlin Heidelberg, 1998.

[11] L. Mora, K. C. Mendonca, E. Wurtz, and C. Inard. Simspark: An
object-oriented environment to predict coupled heat and mass transfers
in buildings. In Proc. 8th Int.l IBPSA Conference, 2003.

[12] C. Paulo, G. Jos, L. Jos, and M. Paulo. Simtwo realistic simulator: A
tool for the development and validation of robot software. Theory and
Applications of Mathematics & Computer Science, 1(1), 2011.

[13] M. Quigley and K. Conley. ROS: an open-source robot operating system.
In ICRA Workshop on Open Source Software, 2009.

[14] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In In Proceedings of
the 11th International Conference on Advanced Robotics, pages 317–323,
2003.

[15] N. Shafii, L. Reis, and R. Rossetti. Two humanoid simulators: Com-
parison and synthesis. In Information Systems and Technologies (CISTI),
2011 6th Iberian Conference on, pages 1–6, June.

[16] A. Hornung, k. M. Wurm, and M. Bennewitz. Humanoid Robot
Localization in Complex Indoor Environments. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
October 2010.

[17] A. Staranowicz and G. L. Mariottini. A survey and comparison of
commercial and open-source robotic simulator software. In Proceedings
of the 4th International Conference on PErvasive Technologies Related
to Assistive Environments, PETRA ’11, pages 56:1–56:8, New York, NY,
USA, 2011. ACM.New York, NY, USA, 2011. ACM.

[18] Bullet Physics Library [online]. Available: http://bulletphysics.org/.
[19] Open Dynamics Engine [online]. Available: http://www.ode.org/.
[20] Object-oriented Graphics Rendering Engine [online]. Available:

http://www.ogre3d.org/.
[21] Robot Operating System. [online] Available: http://www.ros.org/.
[22] NAO robot ROS stack. [online] Available:

http://www.ros.org/wiki/nao robot/.


