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Abstract Service robots have to robustly follow and

interact with humans. In this paper, we propose a very

fast multi-people tracking algorithm designed to be ap-

plied on mobile service robots. Our approach exploits

RGB-D data and can run in real-time at very high

frame rate on a standard laptop without the need for

a GPU implementation. It also features a novel depth-

based sub-clustering method which allows to detect peo-

ple within groups or even standing near walls. More-

over, for limiting drifts and track ID switches, an on-

line learning appearance classifier is proposed featuring

a three-term joint likelihood.

We compared the performances of our system with a

number of state-of-the-art tracking algorithms on two

public datasets acquired with three static Kinects and a

moving stereo pair, respectively. In order to validate the
3D accuracy of our system, we created a new dataset

in which RGB-D data are acquired by a moving robot.

We made publicly available this dataset which is not

only annotated by hand, but the ground-truth position

of people and robot are acquired with a motion capture

system in order to evaluate tracking accuracy and preci-

sion in 3D coordinates. Results of experiments on these

datasets are presented, showing that, even without the

need for a GPU, our approach achieves state-of-the-art

accuracy and superior speed.
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Fig. 1 Example of our system output: (a) a 3D bounding box
is drawn for every tracked person on the RGB image, (b) the
corresponding 3D point cloud is reported, together with the
estimated people trajectories.
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1 Introduction and related work

People detection and tracking are among the most im-

portant perception tasks for an autonomous mobile robot

acting in populated environments. Such a robot must

be able to dynamically perceive the world, distinguish

people from other objects in the environment, predict

their future positions and plan its motion in a human-

aware fashion, according to its tasks.

Many works exist about people detection and track-

ing by using monocular images only ([1], [2]) or range

data only ([3], [4], [5], [6], [7]). However, when dealing

with mobile robots, the need for robustness and real

time capabilities usually led researchers to tackle these

problems by combining appearance and depth informa-

tion. In [8], both a PTZ camera and a laser range finder

are used in order to combine the observations coming

from a face detector and a leg detector, while in [9]
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the authors propose a probabilistic aggregation scheme

for fusing data coming from an omnidirectional camera,

a laser range finder and a sonar system. These works,

however, do not exploit sensors which can precisely es-

timate the whole 3D structure of a scene. Ess et al. [10],

[11] describe a tracking-by-detection approach based on

a multi-hypothesis framework for tracking multiple peo-

ple in busy environments from data coming from a syn-

chronized camera pair. The depth estimation provided

by the stereo pair allowed them to reach good results

in challenging scenarios, but their approach is limited

by the time needed by their people detection algorithm

which needs 30s to process each image. Stereo cam-

eras continue to be widely used in the robotics com-

munity ([12], [13]), but the computations needed for

creating the disparity map always impose limitations

to the maximum frame rate achievable, especially when

further algorithms have to run in the same CPU. More-

over, they do not usually provide a dense representation

and fail to estimate depth in low-textured scenes.

With the advent of reliable and affordable RGB-D

sensors, we have witnessed a rapid boosting of robots

capabilities. Microsoft Kinect sensor [14] allows to na-

tively capture RGB and depth information at good res-

olution and frame rate. Even though the depth esti-

mation becomes very poor over eight meters and this

technology cannot be used outdoors, it constitutes a

very rich source of information for a mobile platform.

Moreover, Dinast [15] and PMD [16] recently built new

depth sensors which can work outdoors, while Samsung

created a CMOS sensor capable of simultaneous color

and range image capture [17], thus paving the way for

a further diffusion of RGB-D sensors in autonomous

robotics.

In [18], a people detection algorithm for RGB-D

data is proposed, which exploits a combination of His-

togram of Oriented Gradients (HOG) and Histogram

of Oriented Depth (HOD) descriptors. However, each

RGB-D frame is densely scanned to search for people,

thus requiring a GPU implementation for being exe-

cuted in real time. Also [19] and [20] rely on a dense

GPU-based object detection, while [21] investigates how

the usage of the people detector can be reduced us-

ing a depth-based tracking of some Regions Of Interest

(ROIs). However, the obtained ROIs are again densely

scanned by a GPU-based people detector.

In [22], a tracking algorithm on RGB-D data is pro-

posed, which exploits the multi-cue people detection

approach described in [18]. It adopts an on-line detec-

tor that learns individual target models and a multi-

hypothesis decisional framework. No information is given

about the computational time needed by the algorithm

and results are reported for some sequences acquired

from a static platform equipped with three RGB-D sen-

sors.

Unfortunately, despite the increasing number of RGB-

D people detectors and people tracking algorithms pro-

posed so far, only one data set is available for testing

these applications with consumer RGB-D cameras, but

this is not suitable for mobile robotics because it only

presents images from static Kinect sensors.

1.1 RGB-D datasets

Before Kinect release, the most popular datasets for

evaluating people detection and tracking algorithms which

exploited aligned RGB and depth data were acquired

from stereo cameras or reciprocally calibrated laser range

finders and colour cameras. That is the case of [10],

which proposed videos acquired from a stereo pair mounted

on a mobile platform in order to evaluate people detec-

tion in an outdoor scenario, or [23], where a dataset col-

lected with Willow Garage PR2 robot is presented, with

the purpose of training and testing multi-modal person

detection and tracking in indoor office environments by

means of stereo cameras and laser range finders. More

recently, [24] and [25] proposed RGB-D datasets ac-

quired with 3D-lidar scanners and cameras mounted on

a car.

Since Microsoft Kinect has been introduced, new

datasets have been created in order to provide its aligned

RGB and depth streams for a variety of indoor appli-

cations. [26], [27] and [28] proposed datasets acquired

with Kinect suitable for object recognition and pose

estimation, while [29] and [30] describe datasets ex-

pressly thought for RGB-D action recognition. In [31],

the authors propose a new dataset for creating a bench-

mark of RGB-D SLAM algorithms and in [32] and [33]

Kinect data have been released for evaluating scene la-

beling algorithms. For people tracking evaluation, the

only dataset acquired with native RGB-D sensors is

proposed in [18] and [22]. The authors recorded data

in a university hall from three static Kinects with adja-

cent, but non overlapping field of view and tracking per-

formance can be evaluated in terms of accuracy (false

positives, false negatives, ID switches) and precision in

localizing a person inside the image.

However, this dataset is not exhaustive for mobile

robotics applications. Firstly, RGB-D data are recorded

from a static platform, thus robustness to camera vi-

brations, motion blur and odometry errors cannot be

evaluated, secondly, a 3D ground-truth is not reported,

i.e. the actual position of people neither in the robot

frame of reference nor in the world frame of reference is

known. For many applications, and in particular when

dealing with a multi-camera scenario, it becomes also
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(a) Back and forth (b) Random walk (c) Side by side (d) Running

(e) Group (f) Translation (g) Rotation (h) Arc

Fig. 2 Illustration of (a-e) the five situations featured in the KTP Dataset and (f-h) the three movements the robot performed
inside the motion capture room. Motion capture cameras are drawn as green triangles, while Kinect field of view is represented
as a red cone.

Fig. 3 RGB and Depth images showing the five situations of the KTP Dataset, together with the corresponding image anno-
tations.

important to evaluate how accurate and precise a track-

ing algorithm is in 3D coordinates. In [20], a sort of 3D

ground truth is inferred from the image bounding boxes
and the depth images computed from stereo data, but

these measures are correlated to the sensor depth esti-

mate.

In this work, we describe and extensively evaluate

our multi-people tracking algorithm with RGB-D data

for mobile platforms originally presented in [34] and

improved in [35]. Our people detection approach re-

lies on selecting a set of clusters from the point cloud

as people candidates which are then processed by a

HOG-based people detector applied to the correspond-

ing image patches. The main contributions are: a 3D

sub-clustering method that allows to efficiently detect

people very close to each other or to the background, a

three-term joint likelihood for limiting drifts and ID

switches and an online learned appearance classifier

that robustly specializes on a track while using other

detections as negative examples. Moreover, we propose

a new RGB-D dataset with 2D and 3D ground truth

for evaluating accuracy and precision of tracking algo-

rithms also in 3D coordinates. We evaluate our track-

ing results also on the publicly available RGB-D People

Dataset and ETH dataset, reaching state-of-the-art ac-

curacy and superior speed.

The remainder of the paper is organized as follows:

in Section 2 the Kinect Tracking Precision Dataset is

presented, while in Section 3 an overview of the two

main blocks of our tracking algorithm is given. The de-

tection phase is described in Section 3.1, while Section

3.2 details the tracking procedure and in Section 4 we

describe the tests performed and we report the results

evaluated with the CLEAR MOT metrics [36]. Conclu-

sions and future works are contained in Section 5.

2 The Kinect Tracking Precision Dataset

We propose here a new RGB-D dataset called Kinect

Tracking Precision (KTP) Dataset1 acquired from a

mobile robot moving in a motion capture room. This

dataset has been realized to measure 2D/3D accuracy

1 http://www.dei.unipd.it/~munaro/KTP-dataset.html.
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and precision of people tracking algorithms based on

data coming from consumer RGB-D sensors.

2.1 Data collection and ground truthing

We collected 8475 frames of a Microsoft Kinect at 640x480

pixel resolution and at 30Hz, for a total of 14766 in-

stances of people. The Kinect was mounted on a mo-

bile robot moving inside a 3x5 meters room equipped

with a BTS2 marker-based motion capture system com-

posed of six infrared cameras. The spatial extent of the

dataset was limited by the dimensions of the motion

capture room. The dataset provides RGB and depth

images, with the depth images already registered to the

RGB ones, and robot odometry. They are made avail-

able both as single files with timestamp and as ROS

bag files, that are recordings containing RGB, depth,

odometry and transforms among reference frames as

a synchronized stream. While Kinect data have been

published at 30 frames per second, the robot pose was

limited to 10 frames per second. As ground truth, im-

age and 3D people positions are given, together with a

further ground truth for robot odometry obtained by

placing some markers also on the robot. Image ground

truth is in the form of bounding boxes and has been

created with the annotating tool and the procedure de-

scribed in [37]. We annotated only people who are at

least half visible in the RGB image. Except when people

are partially out of the image, we made the bounding

boxes width to be half of the height and centered on

the person’s head.

3D ground truth consists of people 3D position ob-

tained by placing one infrared marker on every person’s

head and tracking them with the motion capture sys-

tem. Then, we referred people 3D position to the robot

odometry reference frame and we synchronized the time

with that of the images. At this point, we attempted

to assign a 3D ground truth to every acquired Kinect

frame. When some people were missing (out of the field

of view or fully occluded) in the image ground truth,

they have been deleted also in the 3D ground truth.

When some people were present in the image ground

truth, but missing in the 3D ground truth because of

occlusions, no 3D ground truth have been associated to

those frames. With this process, we assigned 3D ground

truth to about 70% of the acquired Kinect frames. In

Table 1, some statistics are reported about the image

and 3D ground truth.

2 http://www.btsbioengineering.com.

Table 1 Statistics of the ground truth provided with the KTP
Dataset.

Image 3D

Annotated frames 8475 6287
Frames with people 7058 4870
People instances 14766 10410
Number of tracks 20 20

2.2 Content description

The dataset consists of four videos of about one minute

each. In each video, the same five situations are per-

formed:

– back and forth: a person walks back and forth once;

– random: three persons walk with random trajecto-

ries for about 20 seconds;

– side-by-side: two persons walk side-by-side with a

linear trajectory;

– running : one person runs across the room;

– group: five persons gather in a group and then leave

the room.

The robot moves differently in every video, in order to

test tracking performance for different robot motions.

The four videos are named according to the movement

the robot performs: Still, Translation, Rotation, Arc.

The robot maximum translation and rotation speeds

have been respectively set to 0.15 m/s and 0.11 rad/s

for avoiding stability issues due to the high friction pro-

duced by the plastic floor of the motion capture room

on the robot wheels. In Fig. 2, a pictorial representation

of (a-e) the five situations contained in the dataset and

(f-h) the movements the robot performed inside the mo-

tion capture room is reported. In Fig. 3 some annotated

RGB and depth images are reported as representative

of the five situations characterizing the dataset.

2.3 Robotic platform

The dataset has been collected with the mobile robot

represented in Fig. 1 (b). It consists of a Pioneer P3-AT

platform equipped with a side mounted Kinect sensor.

With the KTP Dataset, we provide both the odometry

of this robot and its real position in 3D measured with

the motion capture system. This double source of infor-

mation allowed us to estimate the errors in robot odom-

etry taking the motion capture measurements as ground

truth. As we expected, the error in x-y is maximum

(22mm) when the robot both translates and rotates for

performing an arc movement, while the maximum yaw

error (1◦) is reached when the robot performs more ro-

tations (namely in Rotation). In this work, odometry
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Fig. 4 Block diagram describing input/output data and the
main operations performed by our detection and tracking
modules.

readings are used to refer people detections to a com-

mon (world) reference frame used by the tracking algo-

rithm.

3 People Tracking Algorithm

In this work, we thoroughly test the people tracking

system we proposed in [35]. As reported in Fig. 4, the

RGB-D data are processed by a detection module that

filters the point cloud data, removes the ground and

performs a 3D clustering of the remaining points. Fur-

thermore, we apply a HOG-based people detection al-

gorithm to the projection onto the RGB image of the

3D clusters extended till the ground, in order to keep

only those that are more likely to belong to the class of

people. The resulting output is a set of detections that

are then passed to the tracking module.

Our tracking algorithm performs detection-track as-

sociation as a maximization of a joint likelihood com-

posed by three terms: motion, color appearance and

people detection confidence. For evaluating color ap-

pearance, a person classifier for every target is learned

online by using features extracted from the color his-

togram of the target and choosing as negative exam-

ples also the other detections inside the image. The

HOG confidence is also used for robustly initializing

new tracks when no association with existing tracks is

found.

3.1 Detection

3.1.1 Sub-clustering groups of people

As a pre-processing step of our people detection al-

gorithm, we downsize the input pointcloud by apply-

(a) Height map
and segmenta-
tion.

(b) People detection output.

Fig. 5 Sub-clustering of a cluster containing eight people
standing very close to each other.

ing a voxel grid filter, which is also useful for obtain-

ing point clouds with approximately constant density,

where points density no longer depends on their dis-

tances from the sensor. In that condition, the num-

ber of points of a cluster is directly related to its real

size. Since we make the assumption that people walk on

a ground plane, our algorithm estimates and removes

this plane from the point cloud provided by the voxel

grid filter.The plane coefficients are computed with a

RANSAC-based least square method and they are up-

dated at every frame by considering as initial condi-

tion the estimation at the previous frame, thus allow-

ing real time adaptation to small changes in the floor

slope or camera oscillations typically caused by robot

movements.

Once this operation has been performed, the differ-

ent clusters are no longer connected through the floor,

so they could be calculated by labeling neighboring 3D

points on the basis of their Euclidean distances, as in

[34]. However, this procedure can lead to two typical

problems: (i) the points of a person could be subdivided

into more clusters because of occlusions or some missing

depth data; (ii) more persons could be merged into the

same cluster because they are too close or they touch

themselves or, for the same reason, a person could be

clustered together with the background, such as a wall

or a table.

For solving problem (i), after performing the Eu-

clidean clustering, we remove clusters too high with re-

spect to the ground plane and merge clusters that are

very near in ground plane coordinates, so that every

person is likely to belong to only one cluster. For what

concerns problem (ii), when more people are merged

into one cluster, the more reliable way to detect individ-

uals is to detect the heads, because there is a one to one

person-head correspondence and heads are the body

parts least likely to be occluded. Moreover, the head

is usually the highest part of the human body. From

these considerations we implemented the sub-clustering
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algorithm presented in [35], that detects the heads from

a cluster of 3D points and segment it into sub-clusters

according to the head positions. In Fig. 5, we report

an example of sub-clustering of a cluster that was com-

posed by eight people very close to each other. In par-

ticular, we show: (a) the black and white height map

which contains in every bin the maximum heights from

the ground plane of the points of the original cluster,

the estimated head positions as white points above the

height map, the cluster segmentation into sub-clusters

explained with colors and (b) the final output of the

people detector on the whole image.

3.1.2 HOG detection on clusters extended to the

ground

For the sub-clusters obtained, we apply a HOG people

detector [1] to the part of the RGB image correspond-

ing to the cluster theoretical bounding box, namely the

bounding box with fixed aspect ratio that should con-

tain the whole person, from the head to the ground.

It is worth noting that this procedure allows to obtain

a more reliable HOG confidence when a person is oc-

cluded, with respect to applying the HOG detector di-

rectly to the cluster bounding box. As person position,

we take the centroid of the cluster points belonging to

the head of the person and we add 10cm in the view-

point direction, in order to take into account that the

cluster only contains points of the person surface.

For the people detector, we used Dollár’s implemen-

tation of HOG3 and the same procedure and parameters

described by Dalal and Triggs [1] for training the detec-

tor with the INRIA Person Dataset [38]. In Fig. 6, we

report the performance of our people detection module

evaluated on the KTP dataset. The DET curve [37] re-

lates the number of False Positives Per Frame (FPPF)

with the False Rejection Rate (FRR) and compares the

detection performance with that obtained by applying

also the tracking algorithm on top of it. The ideal work-

ing point would be in the bottom-left corner (FPPF =

0, FRR = 0%). From the figure, it can be noticed that

the tracker performs better than the detector for FPPF

> 0.001.

We released an implementation of our people detec-

tion algorithm as part of the open source Point Cloud

Library ([39], [40]), in order to allow comparisons with

future works and its use by the robotics and vision com-

munities.

3 Contained in his Matlab toolbox http://vision.ucsd.

edu/~pdollar/toolbox.

Fig. 6 DET curve comparing the detector and tracker per-
formance on the KTP Dataset in terms of False Positives Per
Frame (FPPF) and False Rejection Rate (FRR).

3.2 Tracking

The tracking module receives as input detections com-

ing from one or more detection modules and solves

the data association problem as the maximization of

a joint likelihood encoding the probability of motion

(in ground plane coordinates) and color appearance,

together with that of being a person.

3.2.1 Online classifier for learning color appearance

For every initialized track, we maintain an online clas-

sifier based on Adaboost, like the one used in [41] or

[22]. But, unlike these two approaches, that make use

of features directly computed on the RGB (or depth)

image, we calculate our features in the color histogram

of the target, as following:

1. we compute the color histogram (H) of the points
corresponding to the current detection associated to

the track. This histogram can be computed in RGB,

HSV or other color space; here, we assume to work

on the RGB space. If B is the number of bins chosen,

16 by default, then

H : [1...B]x[1...B]x[1...B]→ N (1)

2. we select a set of randomized axis-aligned paral-

lelepipeds (one for each weak classifier) inside the

histogram. The feature value is given by the sum

of histogram elements that fall inside a given par-

allelepiped. If BR, BG and BB are the bins ranges

corresponding to the R, G and B channels, the fea-

ture is computed as

f(H, BR, BG, BB) =
∑
i∈BR

∑
j∈BG

∑
k∈BB

H(i, j, k). (2)

With this approach, the color histogram is computed

only once per frame for all the feature computations.

In Fig. 7(a) we report the three most weighted features
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(parallelepipeds in the RGB color space) for each one of

the three people of Fig. 7(b) at the initialization (first

row) and after 150 frames (second row). It can be easily

noticed how the most weighted features after 150 frames

highly reflect the real targets colors.

(a)

(b)

Fig. 7 (a) From left to right: visualization of the features
selected by Adaboost at the first frame (first row) and after
150 frames (second row) for the three people shown in (b).

For the training phase, we use as positive sample

the color histogram of the target, but, instead of se-

lecting negative examples only from randomly selected

windows of the image as in [41], we consider also as neg-

ative examples the histograms calculated on the detec-

tions not associated to the current track. This approach

has the advantage of selecting only the colors that re-

ally characterize the target and distinguish it from all

the others. Fig. 8 clearly shows how this method in-

creases the distance between the confidences of the cor-

rect track and the other tracks.

3.2.2 Three-term joint likelihood

For performing data association, we use the Global Near-

est Neighbor approach (solved with the Munkres algo-

rithm), described in [42] and [8]. Our cost matrix de-

rives from the evaluation of a three-term joint likelihood

for every target-detection couple.

(a) Random windows. (b) Other detections and ran-
dom windows.

Fig. 8 Confidence obtained by applying to the three people of
Fig. 7(b) the color classifier trained on one of them (Track 1)
for two different methods of choosing the negative examples.

As motion term, we compute the Mahalanobis dis-

tance between track i and detection j as

Di,j
M = z̃Tk (i, j) · S−1k (i) · z̃k(i, j) (3)

where Sk(i) is the covariance matrix of track i provided

by a filter and z̃k(i, j) is the residual vector between

measurement vector based on detection j and output

prediction vector for track i:

z̃k(i, j) = zk(i, j)− ẑk|k−1(i). (4)

The values we compare with the Mahalanobis dis-

tance represent people positions and velocities in ground

plane coordinates. Given a track i and a detection j,

the measurement vector zk(i, j) is composed by the po-

sition of detection j and the velocity that track i would

have if detection j were associated to it.

An Unscented Kalman Filter is exploited to predict

people positions and velocities along the two ground

plane axes (x, y). For human motion estimation, this fil-

ter turns out to have estimation capabilities near those

of a particle filter with much smaller computational
burden, comparable to that of an Extended Kalman

Filter, as reported by [8]. As people motion model we

chose a constant velocity model because it is good at

managing full occlusions, as described in [8].

Given that the Mahalanobis distance for multinor-

mal distributions is distributed as a chi-square [43], we

use this distribution for defining a gating function for

the possible associations.

For modeling people appearance we add two more

terms:

1. the color likelihood, that helps to distinguish be-

tween people when they are close to each other or

when a person is near the background. It is provided

by the online color classifier learned for every track;

2. the detector likelihood, that helps keeping the tracks

on people, without drifting to walls or background

objects when their colors look similar to those of

the target. For this likelihood, we use the confidence

obtained with the HOG detector.
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The joint likelihood to be maximized for every track i

and detection j is then

Li,j
TOT = Li,j

motion · L
i,j
color · L

j
detector. (5)

For simpler algebra we actually minimize the log-likelihood

li,jTOT = −log
(
Li,j
TOT

)
= γ ·Di,j

M +α·ci,jonline+β ·cjHOG,(6)

where Di,j
M is the Mahalanobis distance between track

i and detection j, ci,jonline is the confidence of the on-

line classifier of track i evaluated with the histogram of

detection j, cjHOG is the HOG confidence of detection

j and γ, α and β are weighting parameters empirically

chosen.

4 Experiments

4.1 Tests with the KTP Dataset

In the following paragraphs, we report a detailed study

we perfomed on the RGB-D videos of the KTP Dataset.

We computed results for every dataset sequence and we

studied how different parameters and implementation

choices can influence the tracking results.

4.1.1 Evaluation procedure

For the purpose of evaluating the tracking performance

we adopted the CLEAR MOT metrics [36], that con-

sists of two indices: MOTP and MOTA. The MOTA in-

dex gives an idea of the number of errors that are made

by the tracking algorithm in terms of false negatives,

false positives and mismatches, while the MOTP indi-

cator measures how well exact positions of people are

estimated. We computed them with formulas reported

in [35]. The higher these indices are, the better is the

tracking performance. When evaluating the tracking re-

sults with respect to the 2D ground truth referred to the

image, we computed the MOTP index as the average

PASCAL index [44] (intersection over union of bound-

ing boxes) of the associations between ground truth and

tracker results by setting the validation threshold to

0.5. Instead, when comparing people 3D position esti-

mates with the ground truth obtained with the motion

capture system, we computed the MOTP index as the

mean 3D distance for the results that are correctly as-

sociated to the ground truth. Since we were interested

in evaluating estimates of people position within the

ground plane indipendently from people’s height esti-

mates, we computed distances of only the x and y coor-

dinates, disregarding the z. We considered an estimate

to match with the ground truth if their distance was be-

low 0.3 meters, which seemed to be a fair 3D extension

Table 2 Tracking results for the KTP Dataset with different
algorithms.

MOTP MOTA FP FN ID Sw.

Full 84.24% 86.1% 0.8% 12.7% 60
No sub. 84.2% 83.02% 0.6% 15.9% 56
[34] 86% 82.41% 0.9% 16.1% 82

of the area ratio threshold of 0.5 used for the PASCAL

test.

From now on, we will use the term 2D tracking re-

sults when referring to tracking results computed on the

image, while we will write 3D tracking results when re-

ferring to the evalutation performed in 3D coordinates.

4.1.2 Tracking results

On the first row of Table 2 we report the 2D tracking

results we obtained on the KTP dataset with our full al-

gorithm, a variant of our algorithm which does not use

the sub-clustering method and the algorithm we pre-

sented in [34], which does not perform sub-clustering

and uses a different data association procedure. Other

than the MOTP and MOTA indices, we report also the

false positive and false negatives percentages and the to-

tal number of identity (ID) switches, which represents

the number of times tracks change ID over time. It can

be noticed how the sub-clustering algorithm allowed

to separate people very close (mostly present in the

Side-by-side and Group situations), thus reducing the

percentage of false negatives. It should be noted that

some false positives for the Group video are generated

by tracks positions not perfectly centered on the per-

son. When not using sub-clustering, less detection were

produced because people close to each other or touch-

ing were merged into a single detection, thus also less

false positives were counted. For the same reasons, also

slightly less ID switches were produced. The same dif-

ference in false negative rate holds when comparing the

work described in this paper with the one in [34]. More-

over, with this work we obtain 14% less ID switches, be-

cause we introduced in the log-likelihood computation

the confidence given by the appearance classifier that

in [34] was used, instead, for a re-identification module

decoupled from the motion estimate.

In Table 3, we report the 2D tracking results divided

by video. It can be noticed that our algorithm reaches

very similar tracking performances for static and mov-

ing videos, thus proving to be very good at dealing with

robot planar movements.

In Table 4, we present results divided by type of se-

quence performed. As expected, we can notice that the

worst result is obtained for the Group situation, where

people are often visible only for a small portion. It is
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Fig. 9 Tracking output on some frames extracted from the KTP Dataset. Different colors are used for different IDs. On top of
every bounding box the estimated ID and distance from the camera are reported.

(a) appearance weight (b) motion weight (c) detection score weight (d) detection confidence

(e) min confidence for initial-
ization

(f) dist. sub-clustering (g) selectors (h) voxel size

Fig. 10 Performance of our algorithm on the KTP Dataset when varying its main parameters. MOTA (blue) and MOTP (red)
curves represent percentages, while ID switches (green) is the number obtained by summing up the ID switches for every video
of the dataset. The optimum is reached when MOTA and MOTP are maximum and ID switches are minimum. In some of
them, the logarithmic scale is used for the x or y axis for better visualization. Please, see text for details.

Table 3 Tracking results for the KTP Dataset divided by
video.

MOTP MOTA FP FN ID Sw.

Still 83.76% 88.86% 0.9% 9.8% 15
Translation 84.39% 88.03% 0.8% 10.7% 15
Rotation 84.19% 83.16% 0.9% 15.4% 19
Arc 84.89% 83.24% 0.8% 15.5% 13

worth distinguishing between ID switches caused by an

ID previously associated to a track and then to another

and those generated when a person exits the scene and

re-appears after several seconds. In this table, we re-

ported the total number of ID switches and then we

wrote inside the parenthesis the number of ID switches

due to the latter reason. We can notice that the ran-

dom walk sequences produce the highest number of ID

switches of the first type. This fact can be explained

because we use a constant velocity model to predict

people position. This model results to work well for all

the other situations, but performs worse in the Random

walk situation because people abruptly change their di-

rection. The constant velocity model is also not suited

Table 4 Tracking results for the KTP Dataset divided by
situation.

MOTP MOTA FP FN ID Sw.

Back and forth 84.23% 89.17% 0.9% 9.9% 1(0)
Random walk 84.4% 86.42% 1% 12.3% 22(0)
Side by side 84.6% 79.12% 0.6% 20.2% 5(5)
Running 80.79% 90.44% 0.9% 8.7% 4(4)
Group 83.59% 63% 0.8% 35.8% 32(16)

for avoiding ID switches of the second type, because it

leads to a very low likelihood for people who exit the

room going in one direction and re-enter the room walk-

ing towards the opposite direction. In Table 5, we report

the same table, but using the 3D evaluation method.

We can notice that MOTA changes considerably, in-

creasing for the Syde-by-side and Running situation,

but decreasing for the Random walk and Group ones.

The Group situation, other than for very strong occlu-

sions, is also challenging because three people enter the

field of view of the camera from close to the robot and

are not fully visible in the image for some seconds.
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Table 5 3D tracking results for the KTP Dataset divided by
situation.

MOTP MOTA FP FN ID Sw.

Back and forth 0.196m 88.97% 2.4% 8.5% 1(0)
Random walk 0.171m 70.93% 9.8% 18.9% 20(0)
Side by side 0.146m 87.22% 1.2% 11.6% 5(5)
Running 0.143m 94.57% 1.1% 4.4% 4(4)
Group 0.181m 47.91% 9.1% 42.53% 26(16)

Table 6 Tracking results for different colorspaces.

MOTP MOTA FP FN ID Sw.

RGB 84.24% 86.1% 0.8% 12.7% 60
HSV 84.22% 85.8% 0.7% 12.5% 53
CIELab 84.22% 86.48% 0.9% 12.2% 56
CIELuv 84.25% 86.72% 0.9% 12.9% 65

In Fig. 9, we report also some examples of tracked

frames relative to the KTP dataset. Different IDs are

represented by different colors and the bounding box

is drawn with a thick line if the algorithm estimates a

person to be completely visible, while a thin line is used

if a person is considered partially occluded.

We evaluated different colorspaces to be used for

computing the color histogram of the clusters. As it can

be seen in Table 6, the HSV space turned out to work

better than RGB, CIELab and CIELuv, especially for

reducing the number of ID switches.

The Microsoft Kinect estimates distances by means

of a triangulation method. That means that its pre-

cision decreases with the squared distance from the

camera. In order to analyze accuracy and precision of

our tracking algorithm at various distances, we report

in Fig. 11(a) the percentage of people instances and

in Fig. 11(b) the 3D tracking results obtained on our

dataset for different distance ranges from the camera.

If a person is too close to the camera, the head could be

not visible, thus the tracking algorithm could produce

a worse position estimate. For this reason, the opti-

mal range of distances for people tracking with Kinect

turned out to be of 3-4 meters. Under five meters, the

mean tracking precision is below 20 centimeters, which

is a fair localization error for robotics applications, while,

over five meters, the MOTP rapidly increases, because

Kinect depth estimates lose in accuracy.

In Fig. 10, we report graphs of MOTA, MOTP and

ID switches deriving from the 2D evaluation of our algo-

rithm while varying its main parameters. The optimum

is reached when MOTA and MOTP are maximum and

ID switches are minimum. The (a-c) graphs show the

effects of varying the weights given respectively to the

color, motion and detector likelihoods. It can be no-

ticed how MOTP is almost invariant to these parame-

ters, thus the main criteria for choosing the weights is to

look at MOTA and ID switches. In (d), we report results

(a) (b)

Fig. 11 (a) Percentage of people instances for variuos dis-
tance ranges from the sensor and (b) MOTP value for every
distance range.

for various values of the minimum confidence for peo-

ple detection. Minimum confidences under −1.25 work

well, while above this value the performance rapidly

worsen because many people are missed. For what con-

cerns the track initialization, a value between −1 and

−0.5 seems to be the best choice. Below this value some

false tracks are generated, above this value many people

instances are missed. The results reported in (f) con-

firm that the intimate distance (0.3 meters) is the best

choice for the minimum distance between people to be

used in the sub-clustering method. If this value is too

low, false positives are generated because a person can

result splitted in many clusters. Instead, if using a too

high threshold, people close to each other would remain

merged in a single cluster.

In order to test our appearance classifier, we varied

the number of features (selectors) that are chosen at

every iteration from a pool of 250 weak classifiers for

composing Adaboost strong classifier. It can be seen

in (g) that selecting from 50 to 100 features from a

pool of 250 gives the best tracking results. Given that

the higher this number, the higher the computational

cost, 50 has been chosen as the default parameter. As a

further test for evaluating the effectiveness of using an

online learning scheme for computing the appearance

likelihood needed for data association, we compared our

results with a method which does not exploit learning

and keeps the person classifier fixed after its initializa-

tion. With this approach, we measured a MOTA de-

crease of 7%, in particular due to an increased number

of ID switches and missed people.

Finally, an important trade-off between precision

and computational speed must be taken into account

for the choice of the voxel size. The higher this value is,

the faster is the algorithm because less points have to

be processed, but precision is lost in estimating people

position. From the graph in (h) it can be noticed that

the algorithm still performs well with a voxel size of

0.1 meters, then the performance degrades very quickly,

this time involving also the MOTP index. Moreover, we
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Table 7 Best parameters values resulting from our study.

Parameter Value

Appearance weight [30; 100]
Motion weight 0.5
Detection weight 1
Detection confidence < -1.25
Min confidence for initialization [-1; -0.5]
Distance for sub-clustering 0.3
Number of selectors 50
Voxel size < 0.1
Colorspace HSV

show in Fig. 12 how the voxel size impacts on the 3D

tracking results. Even when evaluating the results in 3D

coordinates, we could see that until a voxel size of 0.1

meters the obtained results are good, while, for bigger

values, all the three indices rapidly get worse.

(a) (b)

Fig. 12 3D evalutation on the KTP Dataset when varying
the voxel size.

In Table 7, we summarize the parameters values of

our detection and tracking algorithm which gave the

best tracking results on the KTP Dataset.

4.2 Test with the RGB-D People Dataset

For the purpose of comparing with other state-of-the-

art algorithms, we tested our tracking system with the

RGB-D People Dataset ([45], [18], [22]), that contains

about 4500 RGB-D frames acquired from three verti-

cally mounted Kinect sensors. For this test, we used

three independent people detection modules (one for

each Kinect), then detections have been fused at the

tracking stage.

In Table 8, we report the results obtained with our

default system against those obtained in [22], which

uses GPU computation. A video with our tracking re-

sults can be found at this link: http://youtu.be/b70vLKFsriM.

Our MOTA and ID switches indices are 71.8% and 19,

while for [22] they are 78% and 32, respectively.

For a correct interpretation of these results, the fol-

lowing considerations must be taken into account:

Table 8 Tracking evaluation with RGB-D People Dataset.

MOTP MOTA FP FN ID Sw.

Ours 73.7% 71.8% 7.7% 20.0% 19
[22] N/A 78% 4.5% 16.8% 32

– half of our ID switches are due to tracks re-initialization

just after they are created because of a poor ini-

tial estimation for track velocity. If we do not use

the velocity in the Mahalanobis distance for motion

likelihood computation the ID switches decrease to

9, while obtaining a MOTA of 70.5%;

– 10% of people instances of this dataset appear on

the stairs, but tracking people who do not walk

on a ground plane was out of our scope. It is then

worth noting that half of our false negatives refer to

those people, thus reducing to 10% the percentage

of missed detections on the ground plane;

– in the annotation provided with the dataset some

people are missing even if they are visible and, when

people are visible in two images they are annotated

only in one of these. Our algorithm, however, cor-

rectly detects people in every image they are visible.

Actually, 90% of our false positives are due to these

annotation errors, rather than to false tracks. With-

out these errors, the FP and MOTA values would

be 0.7% and 78.9%. If we do not consider people on

the stairs, the MOTA value raises to 88.9%.

Part of the success of our tracking is due to sub-

clustering. In fact, if we do not use the sub-clustering

method described in Section 3.1.1, the MOTA index

decreases by 10%, while the ID switches increase by 17.

For this particular dataset the online classifier has

not been very useful because most of the people are

dressed with the same colors and Kinect auto-brightness

function makes the brightness to considerably and sud-

denly change among frames.

4.3 Test with the ETH Dataset

In addition to the experiments we reported with Kinect-

style RGB-D sensors, we also tested our algorithm on

a part of the challenging ETH dataset [10], where data

were acquired from a stereo pair mounted on a mobile

platform moving at about 1.4 m/s in a densely popu-

lated outdoor environment.

In Fig. 13, we show our tracking results on the Bahn-

hof sequence, which is composed of 1000 frames ac-

quired at 14Hz at a resolution of 640x480 pixels. We

compare our FPPF vs miss-rate DET curve with those

of the state-of-the-art approaches already reported in

[20]. We remind that the ideal working point would be

in the bottom-left corner (FPPF = 0, FRR = 0%). It
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is worth noting that depth data obtained from stereo

are more noisy and present more artifacts with respect

to those obtainable with Kinect-style sensors. Standard

state-of-the-art algorithms highly rely on a dense scan-

ning of the RGB image, thus being less sensible to bad

depth data, while our approach processes only patches

of the RGB image corresponding to valid depth clusters,

thus being more dependent on the quality of depth esti-

mates. Nevertheless, we obtain performance near state-

of-the-art, doing better than [10] for FPPF less than

0.1. The algorithm which performs best is a variant

of the method in [20] which uses the Deformable Parts

Model [46] detector. Similar results are also obtained by

the standard approaches in [20], [47] and [48]. However,

the latter two algorithms performs a global optimiza-

tion of all the tracked frames, thus requiring all images

in a batch as an input. Among all these methods, our

approach is the only one which works in real time on a

standard laptop CPU. In Fig. 13 (b), we also reported

the robot path given by the odometry (in black) and

all people trajectories estimated by our algorithm.

(a)

(b)

Fig. 13 (a) FPPF vs miss-rate curve showing tracking re-
sults on the Bahnhof sequence of the ETH dataset. The papers
with * require all the images in a batch as an input. (b) all
estimated people trajectories (various colors) and the robot
trajectory (in black).

4.4 People following tests

For proving the robustness and the real time capabil-

ities of our tracking method, we tested the system on

board of a service robot moving in crowded indoor en-

vironments. The robot’s task was to follow a specific

tracked person and its speed was only limited by the

manufacturer to 0.7 m/s. We tested our whole system

both in a laboratory setting and in a crowded environ-

ment at the Italian robotics fair Robotica 2011, held in

Milan on the 16-19th November 2011. Our robot suc-

cessfully managed to detect and track people within

groups and to follow a particular person within a crowded

environment by means of only the data provided by the

tracking algorithm. In Fig. 14, we report some tracking

results while our robot was following a person along

a narrow corridor with many light changes (first row)

or when other people were walking near the person to

follow (second row). Finally, also some tracking results

collected at Robotica 2011 fair are shown (third row).

4.5 Runtime perfomance

Our system has been developed in C++ and Python (for

the people following module) with ROS, the Robot Op-

erating System [49], making use of highly optimized

libraries for 2D computer vision [50], 3D point cloud

processing [39] and bayesian estimation4.

In Table 9, we report the frame rates we measured

for the detection algorithm and for our complete sys-

tem (detection and tracking) with two computers we

used for the tests: a workstation with an Intel Xeon

E31225 3.10 GHz processor and a laptop with an In-

tel i5-520M 2.40 GHz5. These frame rates are achieved

by using Kinect QQVGA depth resolution6, while they

halve at Kinect VGA resolution. The most demand-

ing operations are Euclidean clustering (Section 3) and

HOG descriptors computation (Section 3.1.2), which re-

quire 46% and 23% of time with QQVGA resolution, re-

spectively. The tracking algorithm is less onerous since

it occupies 8-17% of the CPU.

Our implementation does not rely on GPU process-

ing, nevertheless, our overall algorithm is faster than

other state-of-the-art algorithms such as [11], [21] and

[20], respectively running at 3, 10 and 10 fps with GPU

processing. This suggests that even a robot with limited

computational resources could use the same computer

for people tracking and other tasks like navigation and

4 Bayes++ - http://bayesclasses.sourceforge.net.
5 Both computers had 4GB DDR3 memory.
6 This is the resolution used for most of the tests reported

in this paper.
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Fig. 14 People following tests. First row: examples of tracked frames while a person is robustly followed along a narrow
corridor with many light changes. Second row: other examples of correctly tracked frames when other people are present in
the scene. Third row: tracking results from our mobile robot moving in a crowded environment. In these tests, the top speed
of the robot was 0.7 m/s.

Table 9 Frame rates for processing one Kinect stream (fps).

CPU Detector Detector+Tracker

Intel Xeon E31225 3.10GHz 28 26
Intel i5-520M 2.40 GHz 23 19

self localization. It is worth noting that also our algo-

rithm would benefit from GPU computing. For exam-

ple, voxel grid filtering, Euclidean clustering and HOG

descriptors computation, which take about 80% of the

computation, are all highly parallelizable.

We exploit ROS multi-threading capabilities and we

explicitly designed our system for real time operation

and for correctly handling data coming from multiple

sensors, delays and lost frames. Please refer to [35] and

[51] for a description of the tests we performed with

multiple Kinects in a centralized and distributed fash-

ion.

5 Conclusions and future works

In this paper, we presented a fast and robust algorithm

for multi-people tracking with RGB-D data designed

to be used on mobile service robots. It can track multi-

ple people with state-of-the-art accuracy and beyond

state-of-the-art speed without relying on GPU com-

putation. Morever, we introduced the Kinect Track-

ing Precision Dataset, the first RGB-D dataset with

2D and 3D ground truth for evalutating accuracy and

precision of people tracking algorithms also in terms

of 3D coordinates and we found that the average 3D

error of our people tracking system is lower enough

for robotics applications. From the extensive evalua-

tion of our method on this dataset and on another

public dataset acquired from three static Kinects, we

demonstrated that Kinect-style sensors can replace sen-

sors previously used for indoor people tracking from

service robotics platforms, such as stereo cameras and

laser range finders, while reducing the required compu-

tational burden.

As a future work, we plan to improve the motion

model we use for predicting people trajectories, by com-

bining random walk and social force models, and to test

how much gain in accuracy and loss in speed would

cause an extension to multiple hypothesis of our track-

ing algorithm. Moreover, we aim to realize novel people

identification methods based on RGB-D cues and use

them in our tracking scheme.
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