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Abstract— This paper presents a novel approach to the sensor
network calibration problem. Its aim is to easily calibrate a net-
work composed by heterogeneous sensors, taking advantage of
the Robot Operating System (ROS) framework. The proposed
approach is able to calibrate – in a unique and consistent refer-
ence frame – the extrinsic parameters of a network composed by
standard cameras and depth sensors. Compared to other state-
of-the-art implementations, the presented algorithm performs
an online calibration and optimization with minimal human
intervention. Results of both simulation and real experiments
are provided.

I. INTRODUCTION
Robotic systems and sensor networks consist of many

heterogeneous sensors. The estimation of the poses of all
such sensors with respect to a unique consistent world frame
is a challenging and well-known problem. As a matter of fact,
a good calibration of different sensors can be a useful starting
point for several applications both in the field of sensor
networks (e.g. 3D mapping, people recognition and tracking
[1], microphone calibration for audio localization) and in
many robotics applications (e.g. simultaneous localization
and mapping (SLAM) applications, grasping and manipu-
lation).

Researchers proposed lots of techniques for calibrating
specific sensors or pairs of sensors, even of different types;
however, there are only few methods specifically developed
to simultaneously calibrate an heterogeneous sensor network,
e.g. [2]. As stated by Le et al. [2], the most followed
approach is to divide the system into pairs of sensors
and calibrate each pair independently, even using different
algorithms for each one. In this context, our aim is to develop
an easy-to-use algorithm for the simultaneous calibration of
many different kinds of sensors considering them as a unique
group. Moreover, since calibration is a complex and time-
consuming task, a fast procedure would be a very useful
tool, especially when the involved sensors need often to be
moved (and therefore re-calibrated). To achieve both these
goals, we:

1) assume the sensors’ intrinsic parameters are already
calibrated;

2) perform the calibration online, that is while the data
are being acquired;

3) take advantage of all the tools offered by the Robot
Operating System (ROS) [3].
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The choice to deal with sensors whose intrinsic parameters
have already been calibrated comes from the fact that the
intrinsic parameters need to be estimated only once, they
usually do not change over time. This assumption allows
us not only to drastically reduce the computation time, but
also makes the extrinsic calibration procedure less sensor-
dependent. For what concerns the online calibration, it lets
us reduce the time for the whole procedure to complete.
Moreover it allows us to give the user a real-time feedback
about the calibration status: the interface becomes user-
friendly. Finally, the calibration of a multi-sensor system
requires the program to deal with real sensors and, above all,
the data provided by every sensor needs to be synchronized
with all the other sensors’ data. In this context, ROS gives an
easy way to deal with hardware while hiding all the low-level
network synchronization procedures.

We propose a simple calibration procedure for heteroge-
neous sensor networks that:
• deals with different kinds of sensors (e.g. standard cam-

eras, Kinect-like depth sensors, time-of-flight cameras,
omnidirectional cameras, actuated laser scanners, etc.)
in a uniform way;

• is fast and able to perform the calibration in an online
way with a minimal user supervision.

Our system is an extension of the classical single camera
calibration procedure. We move a checkerboard pattern in
front of the each camera [4] and depth sensor. As soon as
some of the sensors see the checkerboard, the calibration
starts. Then whenever the pattern is visible by at least two
sensors simultaneously, we add a constraint to the calibration
problem. At the end, all the data are processed inside an
optimization framework that improves the quality of the
initial estimation. The pattern is easily extracted from both
images with a state-of-the-art corner finder algorithm, and
from depth data by means of a segmentation algorithm.

Results based on simulation and online real tests are also
presented and compared to those given by a state-of-the-art
toolbox.

A. Related Work

In the robot vision field, RGB cameras have been a key
technology in the development of visual perception. In the
very last years, the introduction of depth sensors contributed
deeply to the advancement of sensor fusion in practical
applications. Auvinet et al. [5] proposed a new method for
calibrating multiple depth cameras for body reconstruction
using only depth information. They do not use a particular
object but rely on plane intersections. For the Kinects’
data synchronization, they exploit the NTP protocol and the



OpenNI library [6]. Their calibration achieves good results:
even if the depth (z-axis) error of the sensor is 10 mm, the
reconstruction error with 3 depth cameras is, in the best case,
less than 6 mm. A drawback of their implementation is that
they have to manually select the plane corners and, above all,
they only deal with depth sensors avoiding the possibility to
add the color information to the fused data.

Le and Ng [2] jointly calibrates groups of sensors. Their
groups are formed using a unifying principle: they all output
3D data. More specifically, each group is composed by a set
of sensors that can provide a 3D representation of the world
(e.g. a stereo camera, an RGB camera and a depth camera,
etc.). They make use of the fact that a sensor can appear
in different groups to have redundancy. So, first of all they
calibrate the intrinsics of each sensor, secondly they calibrate
the extrinsic parameters of each group of sensors and then
they calibrate the extrinsic parameters of each group with
respect to all the others. Finally they calibrate the entire
system in one optimization step. Their experiments show
that this method not only reduces the calibration error, but
also requires a little human intervention. An advantage of
having groups that output 3D data is that the same calibration
objective can be used to calibrate each group with respect
to the others, regardless of the type of sensor. Also, a
joint calibration with redundancy has higher accuracy. An
explanation is that different pairs see different views of the
world, so the algorithm can make use of more constraints.
Another reason is that a joint calibration does not accumulate
errors like a calibration based on sensor pairs do. However
they also state that they should combine this two steps and
jointly calibrate all parameters at once, as we propose in
our work. The main drawback of this approach is that they
always need to group the sensors beforehand in order to have
3D data outputs – that it’s not always possible.

Jointly calibrating the intrinsic and extrinsic parameters
of cameras has been studied as well; for example, Zhang [7]
proposed to jointly estimate the intrinsics and extrinsics using
one objective function. Starting from this approach, a multi-
camera version has been implemented: the Automatic Multi-
Camera Calibration Toolbox [8]. Obviously, approaches like
the one just mentioned are not easily extendable to other
kinds of sensors rather than standard cameras.

B. Notations
We use non-bold characters x to represent scalars, bold

lower case letters x to represent vectors with no distinction
between cartesian coordinates and homogeneous coordinates.
Bold upper case letters M represent matrices. Note that
matrices can be seen as ordered lists of vectors, one for
each column. A coordinate frame belonging to a body B
is denoted by B. The coordinates of an entity e with respect
to the reference frame F are denoted by Fe. In this context,
the pose of A in B’s coordinate system B is denoted as BA
and the relative homogeneous transformation matrix is BAT.
As an example, a point p in A’s coordinate system can be
transformed to B’s coordinate system as following:

Bp = BAT · Ap.

II. CALIBRATION PROBLEM

Let S = {S1,S2 . . . SL} be the set of sensors, either
cameras or depth sensors, in the network. For each sensor
Si ∈ S, i = 1 . . . L, the goal is to find its pose WSi with
respect to a common reference frame W , namely the world.

In the following we assume that all the sensors’ intrin-
sic parameters are already calibrated. Moreover, for what
concerns depth sensors, since we want also to deal with “a
posteriori” calibrated sensors (cfr. [9], [10]), we assume they
cannot provide any intensity information of the scene (e.g.
Kinect’s infrared images are not considered to be available).
In fact, the above-mentioned calibration methods estimate the
intrinsic parameters using 3D data and therefore the intensity
images cannot be corrected according to them.

A. Camera-to-Camera Calibration

A solution to the calibration problem for camera-only
networks is really simple to achieve. A common way is to
use a specific pattern, e.g. a checkerboard, visible by (at
least) two cameras at a time. First, the pose of the pattern
with respect to each camera (using for example OpenCV [11]
solvePnP() method) is estimated, then the transformation
between the two camera frames is computed by means of
simple geometrical operations.
Let, for example, C1 and C2 be the two cameras and B the
checkerboard. Let also C1B and C2B be, respectively, the pose
of B with respect to C1 and C2. Then the transformation C1C2T
can be computed as

C1
C2T = C1B T · C2B T−1. (1)

The procedure can be applied to all the camera pairs having
an overlapping field of view. Imaging to create a graph with
all such pairs (the cameras are the nodes while the trans-
formations the branches), as soon as it becomes connected
we have a rough calibration of the whole network. It is
obvious that the computed parameters are usually far from
being optimal. So at the end the estimated poses need to be
adjusted by means of an optimization algorithm.

A network composed by heterogeneous sensors, such as
cameras and depth sensors, can be calibrated in the same
way. The procedure is not straightforward, but follows the
very same workflow:

1) Roughly calibrate each possible pair.
2) Create a graph with the computed transformations.
3) Optimize.

What we need is therefore an algorithm to calibrate a camera
with a depth sensor and a depth sensor with another depth
sensor so that we are able to create the graph (Sec. II-B).
Then we need an error function to use in our optimization
framework to have the best possible results (Sec. III).

B. Camera-to-Depth Sensor Calibration

Checkerboards work really well with color cameras, so
we would like to keep using them also for calibrating a
camera with a depth sensor. However, because of the lack
of intensity information, it is not possible to extract the



checkerboard corners’ locations from the depth images and
follow the approach described in section II-A. We need to
exploit some other properties. One of these properties is
planarity. Following the approach described in [12], we can
use plane-to-plane constraints to estimate the relative poses
of the two sensors by using a checkerboard.

The only difference with the previously described camera-
to-camera calibration method, is the fact that this procedure
needs at least three instances of the checkerboard to be able
to estimate the transformation. It is also worth to mention
that the very same approach can also be used to calibrate a
depth sensors couple.

C. Optimization

The optimization step follows a bundle adjustment ap-
proach: both the poses of the sensors and the various
locations of the checkerboard in the world are refined.
The resulting parameters are the ones that most accurately
predict the locations of the checkerboard in the acquired data
(images and depth images). The error functions we use in
the optimization framework are described in section III.

III. OPTIMIZATION ERROR

Let B be a checkerboard with reference frame B and let
BB be the set of its corners (in the checkerboard’s coordinate
system). Let also C = {C1,C2 . . .CN} be the set of cameras
and D = {D1,D2 . . .DM} the set of depth sensors.
According to the above notation, and supposing we have
already performed K acquisition steps, we can easily enu-
merate the constraints the acquired data impose:

1) The pose of every camera (WCn, n = 1 . . . N ) and
depth sensor (WDm, m = 1 . . .M ), with respect to
the world reference frame W , must be the same at
each step k.

2) The pose of the checkerboard with respect to the world
reference frame at step k, namely WBk, must be kept
constant.

We can therefore design our error function e as

e =

K∑
k=1

[
1

σ2
cam

N∑
n=1

unk · ecam(WCn,WBk)

+
1

σ2
dep

M∑
m=1

umk · edep(WDm,WBk)

]
, (2)

where ecam(·) and edep(·) are the two different errors we can
compute, respectively, on the image and on the depth data,
while σcam and σdep are the normalization factors. unk and
umk are instead two indicator functions: they are equal to
1 if at step k camera Cn or, respectively, depth sensor Dm
sees the checkerboard B, otherwise they are equal to 0.

Going deeper into details, at each acquisition step k =
1 . . .K we can assume that the checkerboard is visible
by at least two sensors1, one of which is a camera. The

1If this is not the case, data are discarded. It makes no sense to keep
these data, since we cannot use it to constraint the pose of a sensor with
respect to another one.

latter assumption is necessary to estimate the pose of the
checkerboard in the world.

A. Camera Error Function ecam(·)

We consider the error as the reprojection error of the
checkerboard corners onto the image. Let C ∈ C be a
camera with reference frame C. Let also WB and WC be the
poses, respectively, of the checkerboard B at step k (here
we omit the subscript k) and the camera C with respect to
the world reference frame W . We can easily compute the
transformation CBT of B with respect to C as

C
BT = WC T−1 ·WB T (3)

and therefore transform each corner Bb ∈ BB to camera
coordinates by pre-multiplying it by the affine transformation
C
BT, that is

Cb = CBT · Bb. (4)

For each corner b ∈ B we call b̂ the corner extracted from
the image in pixel coordinates. The reprojection error of the
corners can be computed as

ecam(
WC,WB) =

∑
b∈B

∥∥∥reprC(Cb)− b̂
∥∥∥2 , (5)

where reprC(·) is the reprojection function that returns the
pixel coordinates of a 3D point using camera C intrinsic
parameters.

B. Depth Sensor Error Function edep(·)

We calculate the error as a sort of distance between the
plane defined by the checkerboard and the portion of depth
data belonging to the checkerboard. Let D ∈ D be a depth
sensor with reference frame D and let WD be the pose of D
with respect to the world reference frame W . Let also Dπ
be the plane fitted to the portion of depth data belonging to
the checkerboard in sensor coordinates. We can estimate the
location of each checkerboard corner in depth coordinates
DB by using equation (3) and (4) and therefore express the
error as

edep(
WD,WB) =

∑
b∈B

∥∥Db− los reprπ(
Db)

∥∥2 , (6)

where los reprπ(·) is the function that project a 3D point to
the plane π along its line-of-sight as described in [13].

The normalization factor σdep in equation (2) is the error
of the depth measurements. If it depends on the depth value,
it must be removed from equation (2) and added to equation
(6) that becomes

edep(
WD,WB) =

∑
b∈B

1

σ2
dep(

Db)

∥∥Db− los reprπ(
Db)

∥∥2 .
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Fig. 1. The two test scenarios we simulated. (a) N aligned Kinects at a
fixed distance. (b) N Kinects in a circle of a fixed radius.

IV. EXPERIMENTS

A. Simulation
We simulated two different scenarios to test our algorithm:
1) N aligned Kinects (RGB + Depth sensor) at a fixed

distance (Fig. 1(a)).
2) N Kinects in a circle of a known radius (Fig. 1(b)).

We supposed that the location of a corner c in an image is
estimated with a normally distributed error with mean µc = 0
and standard deviation σc = 0.5 pixels along both axes.
Then, dealing with the error on the depth estimation, it is well
known that it depends on the real depth of the considered
pixel. In particular, it is a function of the square of the
depth measurement2. So, for each pixel p in the depth image
belonging to the checkerboard with a ground truth depth
value d, we assumed the error to be normally distributed
with mean µp = 0 and a standard deviation σp = 0.0035d2

meters (we performed some tries with σp = 0.005d2 pixels,
but results were pretty much the same).

For each test we computed both the translation error

etra =
1

2 ·N − 1

2·N∑
i=2

‖ti − t̂i‖ (7)

2http://wiki.ros.org/openni_kinect/kinect_
accuracy
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Fig. 2. Translation error etra computed both varying the number of sensors
N and the distance d between them. Continuous lines report results of tests
with 60 · N checkerboards, while dashed lines report results of tests with
30 ·N checkerboards.
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Fig. 3. Translation error etra computed both varying the number of sensors
N and the radius r of the circle.

and the rotation error

erot =
1

2 ·N − 1

2·N∑
i=2

2 · arccos(|qi∗ · q̂i|). (8)

Here ti and qi are respectively the estimated translation and
rotation (expressed as a quaternion) of sensor i while t̂i and
q̂i are the real ones. All the sensor poses are referred to sensor
1 that we consider the world reference frame. Therefore,
remembering that each Kinect is composed by a camera and
a depth sensor, we have 2 ·N − 1 sensors overall for which
to calculate the two errors. Fig. 2 shows the translation error
etra computed both varying the number of sensors N and
the distance d between them. As we expected, the closer the
sensors, the better the calibration. In fact, when the distance
is small there are more checkerboards in the overlapping field
of view of neighboring sensors, especially close range ones,
and therefore there are more (strong) constraints for the pose
estimation.

In Fig. 3 is shown the translation error etra of the sensor
poses when sensors are in a circle. In this case, an increase
in the number of sensors makes the error decrease, while an
increase in the radius of the circle makes the error increase.
Results about the rotation error are not reported as they are
very small (usually less than 0.1◦) and not that significative.



Fig. 4. One of the test scenarios. Four markers are placed on each kinect
in order to recover their locations by means of a motion capture system.

TABLE I
COMPARISON BETWEEN THE CALIBRATION ESTIMATED WITH THE

AMCCTOOLBOX AND WITH OUR PACKAGE.

translation error [mm]
TEST STEPS AMCC OUR D OUR A OUR BA MUTUAL

1 130 16.755 16.230 13.205 13.205 11.5761
2 106 10.371 17.592 16.493 13.542 7.5705
3 104 10.319 18.118 12.512 13.949 6.0740
4 112 45.938 29.029 50.483 32.269 11.0807
5 101 37.628 28.777 43.043 32.489 8.3238
6 101 26.739 22.744 26.253 27.474 7.4885

B. Real Tests

To prove the validity of our approach, we also performed
some tests in a real scenario. We measured the real poses
of the sensors (i.e. the ground truth) by means of a motion
capture system (Fig. 4) and compared these measures with
the estimation obtained with our method and with the one
given by a state-of-the-art Matlab toolbox (amcctoolbox) [8].
The comparison is made without taking into account the
depth sensors, since the amcctoolbox is not meant to deal
with such kind of sensors. Moreover its worth to notice that
such package estimates both the intrinsic and the extrinsic
parameters of all the cameras.

Results from 6 different test scenarios are provided in
Table I. Test 1, 2 and 3 are grouped together since they
have been performed on the same scene, same for test 4 and
5. For each test we report:

STEPS The number of acquisition steps, as described
in section III.

AMCC The mean translation error (cfr. equation (7))
after the calibration with the amcctoolbox.

OUR D The mean translation error after the calibration
with our algorithm using as intrinsic parame-
ters the default ones provided by ROS.

OUR A The mean translation error after the calibration
with our algorithm using as intrinsic parame-
ters the ones provided by the amcctoolbox.

OUR BA The mean translation error after the calibration
with our algorithm using as intrinsic parame-
ters the best ones provided by the amcctoolbox
(actually the ones calculated during test 1).

MUTUAL The mean translation error between the two
calibration with the same intrinsic parameters.

Looking at the results, we can state that none of the different
setups clearly outperforms the others. Also, when using the
same intrinsic parameters, the camera poses estimated by the
two algorithms do not differ that much (MUTUAL). Moreover,
we can notice that the results highly depend on the intrinsic
parameters estimation: keeping them constant (OUR D and
OUR BA) makes the results more stable.

What makes the difference between our algorithm and the
others is the computational time, i.e. on a modern quad-
core laptop3, we are able to perform the whole calibration
procedure during the GiB acquisition – 2 minutes in total –
without the need to save all the images and process them
back offline – 2 + 20 minutes in total for the amcctoolbox
[8].

During the development of the toolbox, several real
tests have been made with different sensor types (Mi-
crosoft Kinect, PrimeSense Xtion, standard and omnidirec-
tional cameras, etc.). One of the most challenging test we
performed was the calibration between an actuated laser
rangefinder and an omnidirectional camera. We arranged
a robotic platform (Fig. 5) with a Sick LMS200 laser
rangefinder mounted on a Directed Perception pan-tilt unit
(PTU46) and a catadioptric camera above. We then per-
formed our calibration and obtained the results visible in
Fig. 6. Despite the number of images and 3D scans was
around 10, the results were really satisfactory. Note that the
PTU46-LMS200 couple was already calibrated [13] and let
us have a 3D view of half of our laboratory.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a camera-depth sensor network
calibration algorithm. During its development, we focused
on an approach as independent as possible from the involved
sensor types and the outcoming implementation turned out
to be both fast and, as proved by some tests, correct. The
algorithm relies on previously calibrated sensors and takes
advantage of highly optimized C++ code and libraries, e.g.
ceres-solver [14]. Moreover, the choice of using ROS as the
developing framework gives our implementation lots of ad-
vantages in managing the sensors and their synchronization.

One of the main drawbacks of the presented approach is
that it highly depends on the intrinsic parameters provided.
If they are not well estimated, the calibration results are not
really accurate.

A first version of the code is available on GitHub at
https://github.com/iaslab-unipd/multisensor_

calibration. This is a ROS package intended to foster
the development of new (and hopefully more accurate)
calibration algorithms developed by the ROS community.

As a future work, we envision to use this toolbox in an
multi-sensor speaker localization and tracking application for
robotic purposes including audio, video and depth sensors.

3CPU: Intel R© CoreTM i7-4700MQ CPU @2.40GHz × 8. RAM: 12 GiB.



Fig. 6. Results of the calibration between a laser rangefinder and an omnidirectional camera. Bottom left: the 3D scan obtained by the actuated laser.
Top center: the omnidirectional image. Right: the fused data after the calibration.

Fig. 5. The platform we used in our test. On the bottom you can see
the laser rangefinder on the pan-tilt unit, while on the top there is the
omnidirectional camera.
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